Evaluation of passage options for the Middle Fork Willamette River accounting for life history diversity of juvenile spring Chinook salmon

Eric Parkinson, Roberto Licandeo, Oliver Murray, Tom Porteus, and Murdoch McAllister Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC

Life History Conservation: Portfolio Effects

- Life History Type (LHT): a group of fish with similar size and time of migration among habitats
- Benefits
 - Utilization of a spatial array of environments
 - Bet hedging LHTs provides insurance against recruitment failure of any one life history
- Two of common LHTs in Willamette Spring Chinook Salmon:
 - Stayers that leave their natal stream at age-1,
 - Movers, that leave as age-0

Control over Life History Type (LHTs)

- Behavioral response to high density
 - Fish movement is a density dependent effect driven by territory size (Grant and Cramer 1990, Conner et al. 2013, Apgar et al. 2021)
- Genetic Programmed size and timing
 - Fish migration timing and size is driven by inherited responses to ambient environmental conditions (Clarke et al. 1992, Bourrett et al. 2016)
 - Good evidence in a variety of salmonids that LHTs heritable but can be re-established after long periods of absence (Dodson et al. 2013, Foerster 1947, Godbout et al. 2011, Mills et al. 2012, Pearse et al. 2009, Wood and Foote 1996)

Migration from Middle Fork into Lookout Point Reservoir*

- Spring Migration peaks near April 1 for both Age-0 and Age-1
- Fall migration is much less common in this data set

Romer et al. 2017 : RST catches, Uncorrected for RST efficiency

Timing: Middle Fork vs. Willamette Falls (RST vs. CPUE)

*Friesen 2007, beach seines, electrofishing The fish below Willamette Falls are from wild Chinook Salmon populations in the Willamette Basin

- Movement in Middle Fork peaks in <u>Week 10-12</u>
- Density below Willamette Falls peaks in <u>Week 14 (mid May)</u>*

- Timing implies a 2-3 week transit time
 - <u>Passage timing is an essential</u> <u>component in this migration process</u>
 - <u>Upstream fish must pass LOP by mid-</u> <u>April</u>

Passage success depends on the timing of pre- and post-passage processes

- LHTs differ in (1) the timing of downstream migration and/or (2) the timing of ocean entry
- To maintain a particular LHT, the provision of passage has to match both of these

6

Single marginally viable LHT: N. Fork MWR

Reservoir-rearing, Fall migration

- Small differences in SAR are important
- Effective passage must pass fish at sizes and times where SAR is higher

Some Details Max Recruits/Spawner = 1.48 Fry per Spawner is a Bev-Holt function Later stages are all density independent Fecundity=2250/adult \blacktriangleright Max egg-Fry survival = 70% Pre- \blacktriangleright Maximum fry output 5 million, equivalent to 2000 adults Passage > Density Independent Reservoir survival 18% (Kock 2019, 2017 results) \blacktriangleright Migration to Sullivan = 54% **Post-**(Beach Seine survival) Marine Survival= 0.78%, from Passage Table 4 biostandards **PSM=10%**

Recovery Trajectories: Two Populations with contrasting demographics:

- 1) High Stock Productivity and Low capacity in freshwater
- 2) Low Stock Productivity and High capacity in freshwater

Recovery Trajectories of a single population, with 2 LHTs

• The **Two LHTs** share egg-fry habitat, i.e. they compete for spawning and incubation habitat

Equilibrium Abundance of alternative LHTs

Independent Populations do not compete, LHTs compete in shared habitat (egg-fry)

In both cases, survival has to be high enough that max Recruits /Spawner, r >1.0

2 Types- Movers and Stayers
Stayer – <u>High</u> stock productivity, <u>small</u> habitat area

Mover - <u>Low</u> stock productivity, <u>large</u> habitat area

(1) Movers are strongly affected by competition(2) Stayers are not

Yellow is low abundance, Green and Blue are high abundance

					Two Contrasting Populations								
		Stayers								Move	rs		
		Marine	e Surviv					Marin	e Survi				
/lax Freshwater urival (Stream)		0.3%	0.6%	0.9%	1.2%	1.5%			0.3%	0.6%	0.9%	1.2%	1.5%
	20%							3%	R<1	R<1 not viable			
	30%							6%					
	40%							9%					
	50%							12%					
< 0	60%							15%					

Stayers are insensitive to freshwater survival because survival is density dependent and high. Habitat saturates

Yellow is low abundance, Green and Blue are high abundance

Passage Options

Fish Benefits Workbook Options

- 1. Baseline (Includes temp control/fish passage ops from March 1 to October 15)
- 2. FSC (floating surface collector Pumped attraction flow = 220 cfs; no nets)
- 3. FSS + SWS (SWS for temp control; FSS with attraction flow of 400 cfs to 2,000 cfs)
- 4. SWS (SWS for temp control; fish pass to turbine or RO from SWS)
- 5. Drawdown (Reservoir drawn down to El. 754; compare to Min Flood Control Pool El. 825)

Two Life History Types X Two Passage Options

- Model two LHTs:
 - Movers vs Stayers; Behavior is 100% heritable
- Two Passage Options:
 - Baseline: Spring Spillway flow is more likely
 - Drawdown: Fall migration from the reservoir is enhanced
- Model parameters are based on the LHTs on previous slides

This model is Illustrative, i.e. Plausible but not predictive

Assumed Effects of Options: Migration Timing

Option 1: Baseline

- Spring 90% passage efficiency
 - Spring spillway can pass stayers (age-1) –
- Summer No Passage
- Fall and Winter 30% passage efficiency
 - Exit via Turbines or RO inhibited by water depth

Option 5: Fall Drawdown

- **Spring** –**10%** passage efficiency
 - Low Winter elevations makes spillway use less likely,
- Summer Reservoir survival may be low
- Fall 90% passage efficiency
 - Good passage for age-0 movers –

<u>Recovery Trajectories:</u> Two Life History Types X Two Passage Options

- <u>Drawdown</u> favors Movers ------ (limited by spawning area)
- <u>Spring spillway release</u> favors Stayers (limited by juvenile rearing area)

Two Life History Types X Two Passage Options

- More generally: <u>Equilibrium</u> <u>spawner abundance</u> of both LHTs varies with the efficiency of the passage option
- Option 1: Assumed spring spillway efficiencies that favors Stayers
- Option 5: Assumed fall drawdown efficiencies that favors Movers
- Substantial uncertainty in these passage efficiencies and reservoir survival

Two Life History Types X Two Passage Options

- Option1 and Option 5 in Alternate Years sustain both LHTs
- The more productive LHT builds rapidly but declines as competition for spawning area builds

Summary: Passage and Conservation of LHTs

- 1. Passage options will often favor certain LHTs
- 2. More than one passage option may be required to conserve LHTs
- 3. A variety of uncertainties need to be incorporated into the decision model
- 4. The Baseline and Drawdown Options are more difficult to evaluate • FSS and FSC options can provide data on size, time and numbers of downstream migrants

Source of LHT strategy is important

- 1. LHTs driven by behavior
 - Permanent loss of LHTs is not an issue if heritability is very low
 - Displacement behavior means that Stayers dominate at low density, Movers at high density
- 2. LHTs with strong genetic component
 - LHTs present in the source population may be poorly adapted to reservoir passage
 - Selection for fewer LHTs may be inevitable (e.g. Fall Cr. Selects for movers)

Acknowledgments

- Oregon Department Fish and Wildlife
- The Columbia Basin PIT Tag Information System (PTAGIS)

